

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

DEPARTMENT OF MECHINAICAL ENGINEERING

III SEM COURSE OUTCOMES (R20)

SUBJECT NAME	COURSE OUT COMES
	CO1. Define the fundamental properties of fluids and apply the concepts of fluid statics. [K1]
Fluid Mechanics	CO2. Apply the principles of fluid kinematics and boundary layer concepts for fluid flow problems.[K3]
And Hydraulic	CO3. Analyze the fluid flow through pipes. [K4]
	CO4. Understand the concept of hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes and explain the
Mechinery	working and performance of various types of turbines. [K2]
	CO5. Explain working principles of hydraulic pumps. [K2]
	CO1.Calculate stresses and strains in structural members subjected to various types of loadings. [K3]
Mechanics Of	CO2: Sketch the Shear force and bending moment diagrams of beams subject to combination of loads. [K3]
Solids	CO3: Determine and Sketch the stress distribution in section of the beam subjected to bending and Shear loads. [K3]
	CO4: Determine the Shear stresses and Modulus of rigidity, Slope and Deflection in shafts.[K3]
	CO5: Evaluate stresses in thin and thick cylinders. [K4]
Production Technology	CO1Explain various metal casting processes.[K2]
	CO2 . Illustrate melting furnace working principle and solidification processes. [K2]
	CO3 . Explain various welding techniques, soldering and brazing. [K2]
	CO4. Summarize various hot working and cold working methods of metals. [K2]
	CO5. Explain plastics processes and Rapid Prototyping [K2]
	CO1 . Explain basic principles and Zeroth law of thermodynamics. [K2]
Engineering	CO2 . Apply first law of thermodynamics for different thermodynamic systems. [K3]
Thermodynamics	CO3 . Explain second law of thermodynamics and general thermodynamic property relations. [K2]
	CO4 . Describe the thermodynamic concepts of pure substances and identify their properties. [K2]
	COS . Calculate the Thermal Efficiency and Mean Effective Pressures of Air standard Cycles. [k3]
Vector Calculus And Laplase Transforms	COI: Apply del to scalar and vector point functions [K3]
	Illustrate the physical interpretation of Gradient, Divergence and Curl [K3]
	CO2: Find the work done in moving a particle along the path over a force field [K3]
	Evaluate the rate of fluid flow along and across curves [K3]
	Apply Green's, Stoke's and Divergence theorems in evaluation of double and triple integrals [K3]
	CO3: Examine the properties of Laplace transforms [K3]
	Apply the Laplace transforms for different types of functions[K3]
	CO5. Define continuity differenticibility and excluticity for complex functions[K5]
	Apply Cauchy Diamona equations to complex functions in order to determine whether a given continuous function is evolution [V2]
	Apply Cauchy Kiemann equations to complex functions in order to determine whether a given continuous function is analytic [K3]

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

DEPARTMENT OF MECHINAICAL ENGINEERING

R19 V SEM COURSE OUTCOMES

SUBJECT NAME	COURSE OUT COMES
Design of	CO1: Describe the design process, material selection, stress concentrations under various loading [K2]
200-8-101	CO2: Design the machine elements like shaft, couplings and keys. [K4]
Machine	CO3: Design the temporary joints such as cotter joints, knuckle joints, and screw joints. [K4]
Elements	CO4: Design the permanent joints such as riveted joints, welded joints. [K4]
	CO5: Design and analyse mechanical springs for the given loading conditions. [K4]
	CO1 Describe the metal cutting theory and analyse importance of process parameters for machining. (K2)
Machine Tools	CO2: Explain the working principles of different types of lathe and various operations performed.[K2]
	CO3: Explain working principle of shaping, slotting, planning, drilling and boring machines and various operations performed.[K2]
	CO4: Explain the working principle of milling, methods of indexing and accessories of milling machine. (K2)
	CO5: Describe the different types of finishing process and describe the function of jigs and fixtures. (K2)
Thermol	CO1: Differentiate the air standard cycles and actual cycles with reference to engine performance [K2]
Inermai	CO2: Explain the working of I. C. Engines and its components [K2]
Engineering	CO3: Distinguish and discuss the effect of engine variables on combustion phenomenon in S.I and C.I. engines.[K2]
	CO4: Evaluate the performance of I. C. Engines. [K4]
	CO5: Describe the working and analyze the performance of reciprocating and rotary air compressors. [K3]
Maahina Duawing	CO1. Draw different types of mechanical components.[K2]
Machine Drawing	CO2. Draw and represent standard dimensions of different mechanical fasteners and Couplings. [K2]
	CO3. Draw different types of Joints.[K2]
	CO4. Draw the assembled view and sectional view of machine components with all the dimensions. [K3]
	CO1. Explain the objectives and functions of production planning and control. [K2]
Production	CO2. Solve the various forecasting problems in production planning. [K3]
Planning &	CO3. Calculate the required quantities of materials by using ABC, VED and EOQ models. [K3]
	CO4. Determine the new facility location and layout problems and explain the recent trends. [K3]
Control	CO5. Apply scheduling techniques to solve the scheduling problems. [K3]
	CO5: Design and analyse mechanical springs for the given loading conditions. [K4]
	CO1: Explain the design requirements of single point and multi-point cutting tools. [K2]
TUD	CO2: Describe the importance of cutting tools and work holding device in design. [K2]
1 001 Design	CO3: Explain jigs, illustrate the function of jigs for several operations and simple design of jigs. [K2]
	CO4: Illustrate the design principles of fixtures and describe the application of fixtures for machine tools and NC Machine. [K3]
	CO5: Explain the fundamentals of die cutting operations and design of simple progressive and sets. [K2]

SWARNANDHRA COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

DEPARTMENT OF MECHANICAL ENGINEERING

R16 VII SEM COURSE OUTCOMES

SUBJECT NAME	COURSE OUT COMES
Operation	CO1: Apply linear programming techniques to solve industrial optimization problems [K3]
	CO2: solve transportation and assignment problems using operation research techniques [K3]
	CO3: Solve sequencing problems using operation research techniques [K3]
Research	CO4: Solve replacement problems for optimization [K3]
	CO5: Analyze game theory and apply them for optimization.
	CO6: Analyze queuing theory and apply it for optimization and also analyze inventory models for various
	CO1 : Explain the basic concept and application of FEM and compare with other method [K2]
	CO2: Solve one dimensional problem using potential energy approach [K3]
Finite Element	CO3 : Calculate the displacement, stress and reactions in trusses and beans [K4]
Methods	CO4: Solve two dimensional problems using CST and higher order elements and apply numerical integration for higher order element problem analysis [K3]
	CO5: Apply finite element analysis to solve steady state heat transfer problems [K3]
	CO6: Determine the natural frequencies and mode shapes for bar and beams [K4]
	CO1: Explain the hardware and software of CAD systems. [K2]
	CO2: Apply mathematical principles in solving problems such as curve representation and surface representation. [K3]
Cad/Cam	CO3: Define NC and CNC systems and write the basic programs using both G-Codes, M-Codes and APT.[K1]
	CO4: Summarize the principles of Group Technology and Apply them in grouping parts as well as Explain CAPP.[K2][K4]
	CO5: Explain about Computer Aided Quality Control and various inspection methods.[K2]
	CO6: Explain about Computer Integrated Manufacturing, and also benefits of CIM.[K2]
Automobile	CO1: Identify the components of automobile, types of drives and engine specifications. [K2]
	CO2: Describe the working of different elements of automobile transmission system. [K2]
	CO3: Describe the steering geometry, steering mechanisms and steering gears of an automobile. [K2]
Engineering	CO4: Describe and compare different suspension and braking systems of an automobile. [K2, K4]
	CO5: Describe the starting system and electrical accessories of electrical system of an automobile. [K2]
	CO6: Describe the engine lubrication system and use of safety systems of an automobile.[K2, K3]
	CO1: Difference between procedural oriented programming and object oriented programming (OOP)paradigms, Java features,
	Apply OOP Concepts[K3]
Oops Through	CO2: Define java control statements and String Class. [K2]
Java	CO3: Apply the concept of Inheritance and polymorphism. [K3]
	CO4: Explain the Packages and Interfaces. [K2]
	CO5: Define Exception handling and Applets. [K1]
	CO6: Implement the concepts of Multithreading, [K2]